Applications of the DFLU flux to systems of conservation laws
نویسندگان
چکیده
The DFLU numerical flux was introduced in order to solve hyperbolic scalar conservation laws with a flux function discontinuous in space. We show how this flux can be used to solve systems of conservation laws. The obtained numerical flux is very close to a Godunov flux. As an example we consider a system modeling polymer flooding in oil reservoir engineering. Key-words: Finite volumes, finite differences, Riemann solvers, system of conservation laws, oil reservoir simulation, polymer flooding. This work was partially supported by the French-Indo cooperation project CEFIPRA 3401-2. ∗ TIFR-CAM, P.O. Box 1234, Bangalore 560012, India † E-mail: [email protected] ‡ E-mail: [email protected] § INRIA-Rocquencourt, B P 105, Le Chesnay Cedex, France, E-mail: [email protected] Application du flux DFLU aux systèmes de lois de conservation Résumé : Le flux numérique DFLU a été introduit afin de résoudre des lois de conservation scalaires hyperbolique avec des fonctions de flux discontinues en espace. Nous montrons comment ce flux peut être utilisé pour résoudre des systèmes de lois de conservation. On obtient ainsi un flux numérique très proche du flux de Godunov. Comme exemple on considère un système modélisant l’injection de polymère en ingéniérie de réservoir pétrolier. Mots-clés : Volumes finis, différences finies, solveurs de Riemann, systèmes de lois de conservation, simulation de reservoir pétrolier, injection de polymères. Applications of the DFLU flux to systems of conservation laws 3
منابع مشابه
The DFLU flux for systems of conservation laws
The DFLU numerical flux was introduced in order to solve hyperbolic scalar conservation laws with a flux function discontinuous in space. We show how this flux can be used to solve certain class of systems of conservation laws such as systems modeling polymer flooding in oil reservoir engineering. Furthermore, these results are extended to the case where the flux function is discontinuous in th...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملSelf-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملRole of governments in expansion of household rainwater harvesting systems: introduction to experiences of some countries
Role of governments in expansion of household rainwater harvesting systems: introduction to experiences of some countries Vahedberdi Sheikh Associate Prof, Gorgan University of Agricultural Sciences and Natural Resources Received: 2019/09 Accepted: 2020/01 Abstract Sustainable utilization and conservation of natural resources has a key importance in intelligent development. To attain sustain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0908.0320 شماره
صفحات -
تاریخ انتشار 2009